摘要
林火破坏程度大、蔓延速度快的特点给森林生态环境和人类带来极大的危害。深度学习技术可以学习和自适应提取林火特征,捕获的林火图像中火焰的像素尺寸不同,林火提取的特征也不同。为了能够识别复杂背景下不同像素尺度的火灾,笔者提出了一种改进的YOLOv5林火识别方法,通过在YOLOv5的检测网络加入解耦头,解决林火图像输出变量时分类和回归的冲突问题,加快网络收敛速度提高识别精度;在网络中引进CBAM注意力机制,更关注林火信息同时提升识别精度;在Neck网络引入加权双向特征金字塔网络(BiFPN),替换原有的路径聚合网络(PANet),对不同维度的林火特征进行融合,进行特征筛选,增强特征表示能力。实验结果表明,该林火识别算法在自制的林火数据集上进行训练和验证模型,检测性能上均优于YOLOv5算法,在准确率、召回率、平均精度分别提升了5.2%,3.0%,3.4%,mAP@.5:.95提升了4.6%,并且在不同尺寸林火目标的识别精度上均有提升。研究结果对林火识别性能提升有着积极意义。
- 单位