针对传统K-means算法的聚类不稳定性,提出一种基于相异度与邻域的初始聚类中心选择算法。该算法首先构造相异度矩阵,建立每个样本点的邻域,选取K个相互距离较远且邻域内样本点较密集的初始聚类中心。采用K-means算法思想,利用UCI中的三种数据集进行实验。结果表明,相比传统K-means算法,新算法有稳定的聚类结果,且对比于已经提出的两种改进算法,新的算法在保持准确率的前提下,迭代次数有较大程度的减少。