摘要
针对现有的总变分模糊聚类分割算法在强噪声干扰图像分割中难以获得准确有效的分割结果的不足,本文提出了鲁棒总变分核空间模糊聚类分割算法。该算法首先在鲁棒模糊聚类分割算法的目标函数中引入了总广义变分(TGV)正则化,消除图像中不需要的噪声和伪影;其次引入局部空间信息、局部灰度信息以及非均匀隶属函数从而构造一个新的模糊局部信息因子,在保证噪声抑制的同时保留图像中更多细节信息;最后将改进的聚类算法推广至核空间,使原空间线性不可分的像素样本点变成线性可分或近似线性可分,从而更好地给每个像素分配更高的隶属度。实验结果表明,与现有的总变分模糊聚类分割算法相比,建议算法在强高斯噪声干扰情况下的分割精度提高了14.7%,对强高斯噪声有较好的鲁棒性以及分割性能。
-
单位电子工程学院; 自动化学院; 西安邮电大学