摘要

为了实现锂电池健康状态检测和电池故障诊断,在电池全生命周期退化数据基础上,分别使用容量增量分析和差分电压分析法进行特征提取,使用皮尔逊相关系数对健康因子进行相关性分析,并将其输入到人工神经网络用于电池健康状态(state of health, SOH)预测。针对电池容量非线性的退化特性以及局部重生现象,使用双指数函数对其进行建模。同时结合粒子滤波算法对模型参数进行估计,实现电池剩余使用寿命(remaininguseful life, RUL)的概率密度预测。实验结果表明所提出的方法能够实现SOH的精准预测和RUL的不确定性估计。

全文