基于Stacking算法的员工离职预测分析与研究

作者:李强; 翟亮
来源:重庆工商大学学报(自然科学版), 2019, 36(01): 117-123.
DOI:10.16055/j.issn.1672-058X.2019.0001.019

摘要

针对员工离职会增加企业运营成本,降低企业盈利能力的问题,提出使用机器学习的离职员工预测算法;通过Stacking集成学习算法组合Adaboost和Random Forest基本算法构建LRA预测模型,实现对某企业的员工离职预测;实验结果显示,LRA模型的预测准确率为89. 09%,相对于单一算法所构建验证的模型预测准确率明显提高,LRA模型的查准率、查全率以及F1度量指标证实模型的可行性与可靠性,通过对输入LRA模型的特征进行重要性排序,得到影响员工离职的主要因素有加班、工龄(0-3年)、收入、职业级别等,丰富已有研究的结论,有利于企业决策者,针对离职行为进行合理决策。

全文