本文研究了Fermat型微分及微分-差分方程亚纯解的存在性问题,证明了如果m,n为正整数,则不存在非常数亚纯函数f(z)满足微分方程f′(z)m+f(z)n=1,但m=2,n=3或4和m=1,n=2除外.文中给出例子表明例外情况的方程亚纯解的存在性,并讨论该微分方程整函数解.同时,探讨了复微分-差分方程f′(z)m+f(z+c)n=1非常数亚纯解的存在性.