摘要

针对基于BP神经网络的股票价格预测模型在价格预测时存在较大误差的问题,在BP神经网络方法的基础上引入了主成分分析方法(PCA)和改进的果蝇算法(IFOA),提出一种基于PCA-IFOA-BP神经网络的股票价格预测模型。通过PCA对股票历史数据进行降维,减少冗余信息;采用改进的果蝇算法优化BP神经网络的初始权值和阈值;建立基于PCA和IFOA-BP神经网络的股票价格预测模型。对上证指数股票价格数据进行仿真验证,仿真结果表明:在股票价格预测中,该模型比BP神经网络、PCA-BP和PCA-FOA-BP的预测精度更高,是一种有效可行的预测方法。