摘要
针对目前磁共振影像上前列腺组织区域的自动分割存在分割精度较低和过分割等问题,提出了一种基于密集连接和Inception模块的U-Net分割算法。首先采用对比度受限的自适应直方图均衡化方法对前列腺图像进行处理,增强信息的可检测性。此外,该算法将密集连接思想引入到U-Net模型中,改进原有编码器和解码器的连接方式,实现多尺度语义信息的融合和传播。同时,使用由空洞卷积驱动的Inception模块代替原有的级联卷积操作,以增加网络的宽度,增强对不同尺寸目标的特征提取与表达能力。最后,针对非组织目标存在的过分割问题,设计了一种具有分类引导功能的校正器,以减少假阳性预测。通过对NCI-ISBI 2013 Challenge公开数据集进行测试,以Dice相似系数、准确率和假阳率作为评价标准,其均值分别可达86.12%、97.96%和1.11%。实验结果表明,与其他分割算法相比,该算法具有更好的分割效果。
- 单位