摘要
乳腺癌是最常见的癌症种类之一,且患病率每年仍在上升。在不进行手术活检的情况下,通过分析细胞核的各项指标来预测肿块的良性与否,可以有效的为医生提供辅助诊疗并减少患者的痛苦。为此,提出了一种基于LightGBM算法的乳腺癌诊断模型。首先,使用边界-合成少数类过采样算法(Borderline- Synthetic Minority Oversampling Technique,Borderline-SMOTE)来改善乳腺癌确诊数据不平衡的问题。其次,在麻雀搜索算法(Sparrow Search Algorithm, SSA)中引入PWLCM混沌映射、全新的惯性权重和纵横交叉算法对其进行改进,再运用改进后的SSA算法对LightGBM的参数进行自动寻优。然后,由于LightGBM对噪点较为敏感,所以提出了一种OVR-Jacobian正则化方法对LightGBM进行降噪处理。最后,使用改进后的LightGBM混合模型对乳腺癌进行诊断。实验结果表明,提出的混合模型在均方误差、决定系数和交叉验证得分这三个指标上均优于常见的模型,显示出其较好的诊断效果。
- 单位