摘要
水稻土中有机质光谱常常受到水分、秸秆等土壤背景的影响,为了减弱或去除非有机质组分对有机质光谱的影响,构建南方水稻土有机质估算模型。利用机载高光谱(GaiaSky-Mini2-VN)作为数据源,对原始反射率进行单一和组合变换(去除包络线、倒数、对数、一阶微分、二阶微分单一变换和倒数一阶微分、对数一阶微分、倒数对数组合变换)提取一维特征光谱;通过对变化后光谱进行比值和归一化处理,提取二维特征光谱;构建基于特征光谱的线性(多元回归、偏最小二乘)和非线性(反向传播神经网络、支持向量机)有机质预测模型,监测南方水稻土有机质含量。结果表明:一维光谱变换能显著增强光谱对有机质响应的敏感度,二维光谱变换能充分挖掘光谱信息,增强有机质与光谱之间的内在联系,提高建模精度。非线性模型(BPNN、SVM)尤其是BPNN对土壤有机质拟合性好,建模精度高。基于原始反射率比值指数建立的BPNN模型建模精度达到0.952,检验精度达到0.889,建模效果最优。该结果适用于南方水稻土有机质监测,对机载高光谱在土壤有机质监测中的特征波段提取和建模方法选择具有重要借鉴意义,对现代农业发展管理提供新的思路。
-
单位苏州科技大学; 中国科学院地理科学与资源研究所; 环境科学与工程学院; 苏州市农业科学院