摘要
【目的/意义】通过对大数据环境下的多源用户兴趣特征有效融合,缓解个性化推荐中用户兴趣偏好数据的稀疏性和准确性问题。【方法/过程】考虑到多域的数据权威度、内容质量及体系结构的差异化较为明显,提出了基于多源用户标签的跨域兴趣融合模型,首先把多个域中的用户兴趣进行标签化处理,然后利用跨域用户识别和标签权重归一方法得到多个域的用户实体-标签矩阵,最后使用域权重影响系数对标签进行融合,构造具有复合权重的用户兴趣标签集。【结果/结论】使用5个来源数据域进行实验与分析,融合模型能够有效提高标签用户覆盖效果,在查全率不断提高的情况,融合域能够保持较高的标签用户查准率,有效提高用户兴趣特征的描绘效果。
- 单位