摘要
随着信息技术的快速发展,数据资源的结构越来越复杂,离群点挖掘受到越来越多人关注.基于高斯核函数,考虑数据对象的k个最近邻居,反向k近邻居和共享最近邻居三种邻居关系,估计数据对象的密度,提出了一种基于高斯核函数的局部离群点检测算法.该算法通过KNN图存储每个数据对象的最近邻,包括k最近邻,反向k近邻和共享最近邻,构成数据对象的邻居集合S;通过核密度估计KDE方法估计数据对象的密度;通过相对密度离群因子RDOF来估计数据对象偏离邻域的程度,进而判定数据对象是否为离群点,并在真实和合成的数据集上证明了该算法的有效性.
-
单位哈尔滨商业大学; 燕山大学