摘要

为对铁路沿线风速提前进行预判,保障桥梁施工及高速铁路列车运行时的安全,提出基于深度自回归模型(DeepAR)的短期风速预测方法。采用平潭海峡公铁两用大桥和西堠门大桥实测风速进行验证,并以包括小波包分解下的卷积神经网络和循环神经网络混合模型(WPD-CNNLSTM-CNN)在内的4种模型作为点预测对比模型,以SimpleFeed-Forward、ARIMA、Random Walk模型进行置信度为50%与95%的区间预测作为对比模型。研究结果表明:无论是点预测还是区间预测,DeepAR模型都能够在具有随机性、间歇性的短期风速序列中提取到特征信号并进行精度较高的预测,且相比于其他模型具有更好的准确性与泛化能力,可满足实际工程短期风速预测需求。

  • 单位
    土木工程学院; 高速铁路建造技术国家工程实验室; 中南大学