摘要

采用YOLO V5算法对碳纤维复合材料预置夹杂缺陷的识别方法展开研究。为了在提高检测精度的同时保证检测效率,通过添加通道注意力机制、空间注意力机制、使用k-means++重新聚类先验框和优化损失函数等措施改进原算法。利用改进后的网络训练缺陷数据集,每秒处理的图片数量逾12幅,平均精度达到98.8%,召回率为98.1%。与其他算法相比,该算法检测精度和速度都有所提高,可满足实时性和准确性要求。