摘要
研究二维无黏性无热传导Boussinesq方程组和三维轴对称不可压Euler方程组光滑解的增长情况,找各种区域使其上的方程组有快增长的解.对Boussinesq方程组,通过选取初始温度和速度的一个分量,可以把方程去耦为两部分.从关于涡量的部分求出涡量、速度场和使结论成立的区域,从关于温度的部分可见,温度的高阶导的增长仅依赖于速度场的一个分量.通过适当选取该分量,得到温度高阶导有指数增长的全局光滑解.对轴对称Euler方程组做类似的处理,适当选取速度场的径向分量,可把方程组去耦,最终得到一类光滑区域,在其上方程组有指数增长全局光滑解.该研究把Chae、Constantin、Wu对一个二维锥形区域上无黏性无热传导Boussinesq方程的结果,推广到一类光滑区域上,并把他们的方法应用到三维轴对称不可压Euler方程组,得到了类似的结果.