摘要
建立了一种基于反向传播(BP)神经网络算法的阀控密封式铅酸蓄电池(VRLA)的剩余容量(SOC)预测模型,利用MATLAB仿真对三层BP网络模型的性能进行了校验,采用由TMS320F28335为核心组成的硬件控制电路对VRLA蓄电池组进行了实时数据采集,依据预测出的SOC值和控制电路,实现对蓄电池组的放电工作状态的智能监测与控制,保证了系统的经济、高效、安全可靠运行。监测控制系统具有蓄电池SOC预测,端电压、充放电电流等参数实时监控,数据传输及状态显示等功能,具有较高的实际应用价值。
-
单位西南石油大学; 四川建筑职业技术学院