摘要
针对人机交互的心理健康异常识别问题,提出以人脸表情监测和分类作为基础参数,建立一个基于多层特征融合的多类别表情识别模型。首先,对原始面部表情图像进行姿态和灰度归一化;然后以VGGNet网络对模型进行轻量化,将网络浅层局部特征与深层全局特征进行融合;之后利用SoftMax分类器进行表情识别和分类;最终基于表情识别结果实现心理健康数据异常监测。结果表明,采用VGGNet网络与模块3和模块4进行多层融合可取得78.2%的准确率,基于此融合方式可实现表情识别模型搭建。对数据集进行平衡和增广处理后,模型的表情识别准确率进而由78.2%提升至85.3%。本算法的表情识别准确率可高达99.67%,比传统的SVM分类算法和改进AlexNet卷积神经网络分别高出了9.62%和8.05%。且本算法可对9种不同类型的表情进行实时分类,为心理健康监测系统提供了有效数据支撑。
- 单位