基于工艺理论和卷积神经网络的烧结矿转鼓指数预测

作者:刘然; 张智峰; 刘小杰*; 李欣; 李宏扬; 吕庆
来源:钢铁研究学报, 2023, 35(06): 651-658.
DOI:10.13228/j.boyuan.issn1001-0963.20220185

摘要

作为评价烧结矿质量的重要指标之一,转鼓指数的高低直接影响着高炉生产的稳定与否。以某钢铁企业烧结生产数据为基础,提出了基于特征工程与图像识别技术的烧结矿转鼓指数预测方法。首先对挑选出的3类28个影响烧结矿转鼓指数的重要指标完成数据预处理;而后通过SVM-RFE算法以及交叉验证算法筛选出对目标变量影响较大的特征参数;最后用卷积神经网络对经过数据特征转化的二维特征图像进行训练,建立了基于卷积神经网络的烧结矿转鼓指数预测模型。结果表明,在误差范围为±1%的情况下该模型命中率高达93.71%。这种将数据特征转化为图像特征的处理方法有效地提高了预测能力,对未来预测式烧结技术的发展具有很好的借鉴意义。

全文