摘要

探讨基于遗传算法优化的花式捻线机转速值预测模型。针对纺织厂花式捻线机生产中工艺参数转换至罗拉和锭子转速值的预测问题,采用了遗传算法来优化传统以BP神经网络为基础的预测模型,利用遗传算法的全局寻优特点对BP神经网络的权值和偏置进行优化,再通过BP神经网络算法进行罗拉和锭子转速值的预测,改进了BP神经网络容易陷入局部极小值和收敛速度慢的问题。试验数据表明:基于遗传算法优化的BP神经网络的预测数据精确、误差小。认为:该预测模型可以满足花式捻线机转速值预测的需要。