摘要
基于稀疏表示理论,提出了一种采用可调品质因子小波变换(TQWT)的滚动轴承故障诊断新方法,分析了包含早期故障成分的原始采集振动信号的特点和早期故障信号的特性,研究了稀疏表示模型在解决故障特征提取问题和故障类型识别问题的应用;运用TQWT将原始信号转换为一组子带小波系数集,研究了利用迭代收缩阈值算法提取出稀疏小波系数的有效性和谱峭度对故障冲击信号敏感的特性,通过计算各子带信号分量的谱峭度,选取包含故障信息明显的子带小波系数,建立了包含稀疏故障信号分量的故障特征提取方法;利用提取出的故障信号稀疏表示分类模型,实现了基于稀疏表示的滚动轴承故障诊断方法。试验结果表明:在凯斯西储数据集上,提出的故障特征提取方法在剔除干扰成分方面有显著效果,提出方法对于4种类型数据的平均诊断准确率为99.83%,对于10种类型数据的平均诊断准确率为97.73%;与只运用TQWT和迭代收缩阈值算法进行故障特征提取的方法相比,故障诊断精度提高了11.60%,算法运行时间减小8%;在QPZZ-Ⅱ旋转机械平台采集到的振动数据集上,提出的方法对于4种类型数据的平均诊断准确率为100%;与传统小波去噪方法相比,准确率提高了35.67%,算法运行时间减小了7.25%。可见,本文提出的方法可以有效解决滚动轴承故障诊断问题。
- 单位