摘要

针对装备故障预测存在有效样本少、模型预测精度低等问题,集成灰色理论和神经网络方法,提出基于灰色神经网络的故障预测组合模型。基于新信息优先原理和重构背景值方法优化灰色GM(1,1)模型的初始值与背景值,利用Levenberg-Marquardt算法改进反向传播神经网络模型;采用组合预测思想,将多方法融合改进灰色模型和神经网络模型,分别构建基于权重分配、基于误差修正和基于结构优化的3种灰色神经网络组合模型。以某雷达发射机的故障预测为例,验证上述方法在故障预测中的有效性。结果表明,灰色神经网络组合模型的预测精度优于单一预测模型,可用于装备的故障预测和预测性维修。