摘要

近年来,基于深度学习的高光谱图像(HSI)分类研究引起了各领域的广泛关注。HSI光谱波段数多、信息冗余度高、计算复杂,出现训练样本不足的问题,容易导致模型训练过拟合,影响分类精度。为了提高分类精度并减少训练时间,提出一种基于三维卷积神经网络(3D-CNN)并结合双分支双注意力机制的快速密集连接网络,用于HSI的分类。首先利用主成分分析(PCA)对原始数据进行降维,减少冗余信息,然后采用双分支密集连接结构,并结合快速傅里叶变换(FFT)的双分支高效通道注意力(ECA)机制,同时增加了一个FFT层,既保证了模型的分类精度,也加快了模型的训练速度。在多个公共高光谱数据集上对方法进行实验验证,性能评估指标采用总体分类精度(OA),平均分类精度(AA)和Kappa系数。实验结果表明,所提方法在提高分类精度的同时,显著减少了训练时间和测试时间。