摘要
为解决食品安全领域关系抽取数据集体量小且关系种类复杂,普通网络模型无法充分进行特征学习的问题,提出了一种融合对抗训练和胶囊网络的食品安全领域关系抽取模型GAL-CapsNet。该模型使用双向长短期记忆网络提取文本序列的全局特征,并通过胶囊网络的动态路由机制获取高层次的局部特征,具有较强的特征提取能力,同时在嵌入层加入对抗训练提升模型的鲁棒性,从而有效提高了关系抽取任务的效果。在本文所用的食品安全领域数据集上的实验结果显示:对比其他深度神经网络方法,GAL-CapsNet在关系抽取任务中的精确率、召回率和F1值均有明显提升,分别达到了85.91%、82.82%、84.33%,证明了模型在食品安全领域数据集上的有效性。
- 单位