大坝沉降是一个非线性的过程。为了能准确预测大坝沉降,将GM(1,1)模型和BP神经网络模型结合,以某大坝沉降量为实例,研究灰色BP神经网络在大坝沉降监测中的应用。通过GM(1,1)获得一组拟合数据,将拟合数据和原始值作差得到拟合值的误差序列,再利用BP神经网络模型对拟合数据和拟合数据的误差序列进行训练,最后再以拟合数据作为输入值,利用训练完成的BP神经网络得到误差序列,进而得到预测值。经过实验分析,得出组合模型的预测精度高于单一模型的预测精度。