摘要

螺旋选矿机是一种流膜重力选矿设备,目前其产品的截取是通过工人观察矿物分带并根据精矿与尾矿的分割位置,调节截取器的分矿块到相应的位置以实现对精矿的准确截取,获得合格的精矿产品。由于每个工人的经验和技术水平不一样,难以保证获取的矿带位置信息和操作的准确性,而容易造成选矿指标的波动。为了准确、快速、自动地获取螺旋选矿机矿物分带的位置信息,针对螺旋选矿机矿带分界模糊、识别难度大等难题,提出了一种优化的Canny边缘检测算法和基于深度学习的HED(Holistically-Nested Edge Detection)边缘检测算法,并分别对螺旋选矿机矿物分带图像进行了矿带分割位置提取试验。试验结果表明,基于深度学习的HED算法优于传统的边缘检测算法,其识别的精度可以满足生产中对螺旋选矿机矿带分割特征信息识别的要求。