多模态影像在辐射特征和几何特征方面存在的显著差异,会造成高精度匹配困难。因此,本文提出了一种融合多尺度深度学习特征的多模态影像匹配方法,主要利用深度残差神经网络结构自主训练学习影像的学习型特征,得到多模态图像之间更为丰富和更为准确的同名特征点对,实现了对多尺度、多时相影像的协同稳健匹配。结果表明,本文方法对于多组实验均能够得到数量丰富且分布相对均匀的同名特征点对,并具有高效、稳健的匹配性能。