摘要

为更深入挖掘用户位置信息,本文从位置语义相似性角度挖掘用户特征.利用LDA算法对用户签到信息进行位置主题建模,采用Gibbs采样算法计算LDA模型中的分布函数,并根据这些分布提出了基于签到地点语义的用户相似性特征向量.利用有监督的机器学习算法,综合LBSN的网络结构信息、签到地点信息、地点语义信息得到多维相似性特征向量来进行链接预测.在Gowalla数据集上的实验结果表明,相较于传统的链接预测算法,将基于签到信息的多个相似性特征作为辅助信息的链接预测算法显著提高了LBSN链接预测的性能.

  • 单位
    铜陵有色金属集团股份有限公司金冠铜业分公司; 金诚信矿业管理股份有限公司