摘要

针对利用可见光图像检测AFP铺层表面缺陷受光源条件差、预浸纱纹理对比度低等因素影响,检测结果不理想,提出一种基于改进CenterNet的AFP铺层表面红外图像缺陷检测方法,提高AFP铺层表面缺陷检测性能。首先,针对CenterNet模型参数数量过多而工控机硬件配置有限的问题,提出利用基于ASFF的轻量级MobileNetV3作为骨干网络,构建轻量级anchor-free检测模型AFPCenterNet,减少网络参数数量的同时降低计算机存储资源占用率。然后,针对高斯核函数带宽参数的求解,提出一种根据ground-truth bounding box长宽比自适应调整带宽参数的方法,减小负样本数量,降低网络模型的损失误差。实验结果表明,改进后的AFP-CenterNet在AFP红外数据集上的AP为90.2%,模型内存容量为12.9 MB,使用GPU加速时单张检测时间为52 ms。和原有的CenterNet骨干网络相比,AFP-CenterNet检测精度略差于DLA-34,和ResNet-101相当,比ResNet-18高7.7%,内存占用率和DLA-34、ResNet-101、ResNet-18相比分别降低83.2%、93.6%和78.6%。和SSD、YOLOv3相比,AFP-CenterNet模型的AP分别提升9.6%和8.3%,内存占用量降低85.1%和94.5%。在不使用GPU加速的条件下,改进后的AFP-CenterNet的检测速度和CenterNet、SSD、YOLOv3相比提高近一倍,具有明显的检测优势。

  • 单位
    浙江大学; 流体动力与机电系统国家重点实验室