摘要
本文运用SPSS统计软件,采用ARIMA模型与Winter模型对我国2010年1月-2017年7月水运货运量数据进行分析,ARIMA模型定为ARIMA(1,1,1)(2,1,0)12,通过对训练样本进行训练,R方达0.953,拟合效果较好。Winter模型,分别采用Winter季节可加性、Winter相乘性条件对训练样本进行训练,R方分别为0.974、0.966,标准化的BIC(L)分别为14.752、15.036,拟合效果都比较好。三种方法对2017年8月-2018年8数据进行测试,都有较好效果;在进行2018年9-2019年9月预测中,三种方法所得结果都有差异,总体来看采用Winter季节可加性最优,其次为Winter相乘性,最后为ARIM模型。故在进行我国水运货运量预测的短期预测中,需综合考虑选择模型进行预测。
- 单位