双通道Unet模型对前列腺自动勾画的研究

作者:陈洪涛; 高艳; 朴莹; 梁晓敏; 张定; 李子煌*
来源:中国医学装备, 2022, 19(07): 17-21.
DOI:10.3969/J.ISSN.1672-8270.2022.07.004

摘要

目的:在图像分割的深度学习算法Unet网络基础上建立双通道Unet(DUnet)深度学习结构模型,以提高前列腺器官图像自动分割的准确性。方法:选取100例受检者的前列腺核磁扫描图像,其中50例来自医院图像资料系统,50例来自国际医学图像计算和计算机辅助干预(MICCAI)GrandChallenge数据库。100例受检者的扫描图像中81例为训练集,10例为验证集,9例为测试集。采用相干增强扩散(CED)算法对原始图像纹理和边缘进行强化,通过跳跃连接突出有效特征,获取更多多维信息增加上采样分辨率。建立双通道收缩路径和扩张路径形成对称结构DUnet,并行提取和学习原始图像以及CED图像特征,将双通道输出特征图融合得到分割图像。采用整体的Dice系数(Accuracy)、以扫描对象为单位的Dice相似系数平均值(MeanDSC)、Dice相似系数中位值(MedianDSC)、平均表面距离(ASD)、最大对称表面距离(MSD)和相对体积差(RVD)6项指标对DUnet、Unet#(原始图像)和Unet*(CED图像)3种方法进行评估。结果:DUnet、Unet#表现均优于Unet*。表现最好的DUnet相较于Unet#,Accuracy提高1.28%,MeanDSC提高1.43%,MedianDSC提高0.86%,ASD降低0.2 mm,RVD降低2.66%。直观勾画方面,DUnet自动勾画与医生手动勾画吻合度更高,勾画更加精准。DUnet在前列腺器官边界起伏区域更能捕捉到其形状的变换,对混淆性、相似性边界区域也有更好的辨别。结论:DUnet模型在突出其纹理和边缘强化特征的同时,弥补了强化效果导致精细结构的损失,在前列腺图像分割与勾画方面较Unet具有更优的表现。

全文