摘要
作物病害叶片症状是病害类型识别的依据,与作物病害发生相关的环境信息是作物病害预测的依据。由于病害叶片症状和环境信息的复杂多样性,使很多作物病害检测方法的准确率不高。针对大田作物病害检测难题,提出一种基于卷积神经网络(convolutional neural networks,简称CNN)和双向长短时记忆网络(BiLSTM)相结合的跨深度学习模型的作物病害检测方法。首先,利用CNN提取作物病害叶片图像的分类特征,利用BiLSTM提取病害发生的环境信息的特征;然后,利用注意力机制对2种特征进行融合;最后,利用Softmax分类器进行病害检测。在作物病害相关数据库上进行试验,识别准确率为92.35%。结果表明,该方法优于传统的病害检测方法和基于长短时记忆神经网络(LSTM)的检测方法。该方法能够准确检测出作物病害,有助于提高大田作物病害检测系统的准确率和鲁棒性。
-
单位电子信息工程学院; 郑州西亚斯学院