摘要

针对目前动态手势识别计算复杂度较高以及对实验器材有相应要求的问题,提出基于多特征融合的动态手势识别。使用OpenPose得到手部关键点信息,建立手势模型,将坐标信息利用手部的结构关系进行处理,得到手部的角度和长度特征。将角度特征序列和长度特征序列进行融合,利用阈值设定过滤序列中的奇异点,使用FastDTW算法计算待测动态手势与手势模板库中的序列距离,得到预测手势动作类别。实验表明,该方法计算复杂度较低,识别速度快,选取的四种手势动作的识别准确率均在90%以上,有较好的识别效果。