摘要

【目的】针对当前基于翻译的知识图谱嵌入模型负采样质量偏低,影响知识图谱的有效嵌入,导致模型表征能力低、性能较差等问题,提出一种联合关系上下文负采样的知识图谱模型。【方法】从原始知识图谱中提取目标实例的邻居并生成上下文向量;然后根据相邻关系可提供给定实体性质或类型信息的特性,在负采样时利用Concat聚合函数对给定实体的关系上下文进行聚合,确定被替换实体的属性;最后结合TransE模型的三元组嵌入并选择相同属性的替换实体生成负例三元组,从而提高正负例三元组的相似度。【结果】实体链接中,在FB15K-237与WN18RR数据集上相对于基准模型分别提升18.3、29.2个百分点;同时在关系链接中较基准模型中的最优结果提升0.7个百分点。【局限】在邻居关系上只考虑了关系上下文的语义信息,故难以确定相对位置,需要进一步探索其路径信息。【结论】该采样策略通过提高替换实体与被替换实体间的相似性,提升了负例三元组的质量,使模型的准确率得到提高。