摘要
针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对特征进行约简,构建一维健康因子(HI);再结合长短时记忆网络(LSTM)模型,通过迁移策略利用共享隐含层的方法对目标夹送辊进行预测分析。实验验证,经过深度迁移学习的LSTM模型预测效果更好,对夹送辊设备的健康状态评估及剩余使用寿命预测具有一定的指导意义。
- 单位