摘要
准确的电力负荷预测是电力系统正常运转的重要保障。针对新冠疫情期间负荷需求波动大、历史参考负荷难以建模等问题,提出了一种基于机器学习与静默指数、滚动焦虑指数的短期负荷预测方法。首先,利用谷歌流动性数据和疫情数据构建出静默指数、滚动焦虑指数来量化经济、疫情的发展对电力负荷造成的影响。然后,采用最大信息系数分析疫情期间电力负荷的强相关因素并引入疫情负荷关联特征。最后,将气象数据、历史负荷以及构建的疫情关联特征合并作为预测模型的输入变量,通过多种机器学习模型进行预测算例分析。结果表明,引入疫情关联特征的负荷预测模型能够有效地提高疫情期间负荷预测的准确性。
-
单位安徽大学; 电子信息工程学院