摘要

针对传统负荷预测方法难以兼顾电力负荷内在线性特征量与非线性特征量的问题,文中提出一种基于EEMD和ARIMA-GRNN的混合负荷预测模型方法。该方法采用EEMD法,将负荷数据分解成不存在模态混叠的IMF分量和余项。运用ARIMA模型算法对每个IMF分量进行线性预测,得到时间序列预测分量,并将其与原始数据相减得到其中的非线性分量。通过GRNN神经网络算法对非线性分量进行预测得到非线性分量的预测值,并将求得的线性预测分量和非线性预测分量相加得到最终的预测值。仿真实验表明,文中提出的基于EEMD和ARIMA-GRNN的混合预测模型在预测精度和性能上均优于采用单一算法的负荷预测方法。