摘要

针对滚动轴承振动信号的非平稳性和非线性特点以及BP神经网络结构参数差等因素导致滚动轴承故障识别准确率低的问题,提出一种基于小波包结合奇异值分解(SVD)和改进粒子群算法(IPSO)优化BP神经网络的滚动轴承故障诊断方法。首先通过小波包对振动信号进行分解与重构,得到不同频段的信号之后利用SVD提出有效的故障特征向量,输入到BP神经网络中进行测试。考虑到BP神经网络结构参数差等因素,使用IPSO对BP神经网络进行优化,最后测试得出结果。对比实验模拟和现场数据验证表明,基于小波包-SVD和IPSO-BP的滚动轴承故障诊断准确度大大提高。

全文