提出一种基于卷积神经网络的谱聚类算法,该算法首先采用预训练好的卷积神经网络对图像边缘进行特征提取和特征融合,减轻了对相似度矩阵的依赖.其次在相似度矩阵的谱分解过程中,使用Nystrom近似方法逼近相似度矩阵的特征空间,进而加速了图像分割的速度.最后通过Berkeley图像数据集证明了该算法能有效降低谱聚类的时间消耗.