摘要

非线性灰色Bernoulli模型是灰色预测模型的一类拓展,在捕捉序列非线性趋势性能上表现良好,但仍然存在许多改进的空间.在传统的非线性灰色Bernoulli模型的基础上提出一种改进的方法,结合优化初始值,采用Guass-Newton算法求解最优模型参数以及滚动建模机制三个方面对模型进行改进.数值结果表明,优化初始值能够提高模型的预测精度,Guass-Newton算法寻求最优参数以及滚动建模机制能进一步减少预测误差的产生.因此,改进的模型能够有效地提高非线性灰色Bernoulli模型的预测性能.