摘要
针对雷达高分辨距离像(high resolution range profile, HRRP)目标识别中特征提取及识别问题,提出了一种基于一维堆叠池化融合卷积自编码器(one-dimensional stacked pooling fusion convolutional autoencoder, 1D SPF-CAE)的识别方法。首先构造一维池化融合卷积自编码器(one-dimensional pooling fusion convolutional auto-encoder, 1D PF-CAE),在编码阶段,采用最大池化和平均池化同时提取不同的编码特征并进行融合来提取HRRP的结构特征;然后堆叠多个1D PF-CAE形成1D SPF-CAE;最后使用标签数据对网络进行微调,实现HRRP目标识别。并使用AdaBound算法优化网络训练来提高识别性能。基于弹道中段目标仿真数据的实验结果表明,该方法具有较强的特征提取能力,对于HRRP目标识别准确率高、鲁棒性强。
-
单位西京学院; 空军工程大学防空反导学院