摘要

高光谱图像的高维特性和波段间的高相关性,导致高光谱图像地物识别问题研究中,面临着数据量大、信息冗余的问题,降低了高光谱图像的分类识别精度。针对以上问题,提出了基于局部保留降维(Local Fisher Discriminant Analysis,LFDA)结合遗传算法(Genetic Algorithm,GA)优化极限学习机(Extreme Learning Machine,ELM)的高光谱图像分类方法。首先,采用LFDA对高光谱图像数据进行降维处理,消除信息冗余并保留局部邻域内主要特征;然后用GA优化ELM,对降维处理后的特征样本进行分类,提高高光谱图像的分类识别精度。将该方法应用于Salinas和Pavia University高光谱图像的地物识别问题研究,分类精度分别达到了98.56%和97.11%,由此验证了该方法的有效性。