针对地理标签和评论信息的情感倾向对于推荐系统性能的影响,本文基于地理标签和用户评论情感分析提出有关兴趣点的推荐策略,并建立了一种基于内容的推荐模型.本系统首先对用户兴趣点信息进行有效的补充,并实现了用户兴趣点相似度度量.对无标签评论数据进行情感分析及挖掘,获取其情感倾向度.同时本系统结合了时间滑动窗口,更准确地把握用户评论和兴趣点的结合度.最终得到用户个性化推荐排名.本文方法涵盖了本地用户和外地用户的个性化推荐策略.通过实验数据表明,本文模型有效提高了推荐的准确度.