为提高移动边缘计算(MEC)环境下大型云计算中心资源的利用率和用户体验,提出基于K-means算法的动态计算资源和频谱资源分配算法(KDSAA)。分析传统的资源平均分配方式和虚拟机分配方式现状,研究用户的综合需求,将资源模拟成"流体",采用拍卖算法进行分配,线性求解出边缘云吞吐量和传输时延的最优值。实验结果表明,该算法可有效提高边缘云吞吐量和降低传输时延。