摘要
阵发性房颤具有发作突然且时间短的特点,而目前其临床诊断方法——心电信号,不适于日常监护,因此,提出一种基于心冲击信号(ballistocardiogram,BCG)的非接触式房颤自动检测方法.研究不同输入数据长度与不同网络深度的匹配关系,获取应用一维卷积神经网络(convolutional neural network,CNN)检测阵发性房颤的最优组合.通过2 000组数据的测试,所提模型的最佳性能为:测试准确性94. 8%、敏感性97. 2%、特异性92. 7%,为基于BCG信号的心律失常检测与远程日常家庭监护提供了可能性.
- 单位