摘要

为实时掌控高拱坝混凝土温度变化,及时制定合理控温措施,防止产生温度裂缝,深入分析了混凝土温升阶段温度影响因素,并选取初始浇筑温度、环境气温、通水温度、通水流量、绝热温升等5个主要因素作为LSTM神经网络的输入因素,建立了基于LSTM神经网络的高拱坝混凝土温升阶段温度预测模型,同时采用最大误差、平均绝对误差(MMAE)、对称平均百分比误差(SSMAPE)等评价指标检验模型精度,最后以白鹤滩高拱坝为例,对大坝混凝土温升期的温度进行预测。结果表明,所建预测模型的最大绝对误差为0.58℃,MMAE、SSMAPE分别为0.30℃、1.35%,预测精度较高,可操作性强,能为高拱坝混凝土温度控制提供决策支撑。