摘要

提出一种基于多尺度LBP(Local Binary Pattern)的人脸识别算法。建立人脸图像高斯差分尺度空间,计算尺度空间图像的LBP特征,将LBP特征图像划分为互不重叠的特征区域,然后分别进行直方图统计,最后将所有区域的LBP直方图序列连接起来得到多尺度LBP特征,采用最近邻分类器对人脸图像分类识别。实验分析表明,多尺度LBP特征具有较强的人脸图像描述能力,能够提取到更加丰富的全局信息,鲁棒性强,在识别率和识别速度上均比SIFT算法高。