摘要
针对传统的车牌识别算法对于复杂环境车牌定位效果不理想、车牌识别准确率低、实时性差等问题,提出了一种基于深度学习的车牌智能识别方法。首先使用Yolov3网络对图片中的车牌进行定位,然后采用空间变换网络对倾斜的车牌进行校正,并将校正后的车牌送入设计的改进卷积神经网络中提取车牌序列特征,最后通过双向递归神经网络和时序分类网络识别出车牌字符。与传统车牌识别方法相比,提出的方法能够有效克服天气等不良状况的影响,从Yolov3定位到识别完成的平均时间可以缩短至33 ms左右,平均识别准确率能够达到96.1%。
- 单位