摘要

为了解决水下相机设备捕获的鱼类图像质量差、数据量不均匀等难以准确识别鱼类的问题,提出一种基于特征融合的FL-BCNN鱼类识别算法。对B-CNN算法进行改进,融合不同卷积层的特征,提高细粒度特征的表达能力,解决了图像质量差引起的特征不明显的问题。利用焦点损失函数(Focal Loss)解决样本数据不平衡的问题,提高水下鱼类图像的识别能力。利用F4K(15)数据集与四个已有算法进行鱼类识别对比实验。实验结果表明,FL-BCNN鱼类识别算法的识别精度较高,具有较好的识别速度,可以有效解决鱼类识别中样本不平衡的问题。