摘要

为提高露天矿抛掷爆破效果预测精度,进而反馈优化爆破参数设计。建立HHO-LSSVM(哈里斯鹰算法优化最小二乘支持向量机)模型,预测抛掷爆破效果;将该模型所得预测精度及效率与未经优化的LSSVM(最小二乘支持向量机)、ELM(极限学习机)、GA-BP(遗传算法优化BP神经网络)、PSO-LSSVM(粒子群算法优化最小二乘支持向量机)模型进行对比。研究结果表明:采用HHO-LSSVM模型相较于未经优化的LSSVM和ELM模型所得到的有效抛掷率、松散系数、最远抛掷距离的预测精度均具有更高的决定系数值,更小的均方根误差值;HHO-LSSVM模型预测的有效抛掷率、松散系数、最远抛掷距离与实测数据之间的平均误差分别为2.701 5%,2.983 4%,2.834 5%,均在5%以内,说明HHO-LSSVM模型对抛掷爆破效果具有较好的预测精度。研究结果可为通过准确预测爆破效果进而反馈抛掷爆破的优化设计提供一定参考。