摘要

动车组车体结构轻量化设计会导致结构柔性增加,随着动车组运营里程的增加,轮轨磨耗的加剧,车体在运行过程会出现抖车、晃车等异常弹性振动现象,进而影响乘坐舒适性和运行安全性。因此,从模态贡献、模态设计和模态控制等角度出发分析产生该异常振动的原因。基于动车组车体模态修正和模态试验结果,建立车体有限元模型;根据车体工况,将车体模态处理为自由模态,提取结构模态参数;基于模态分析理论和模态贡献原理,分析车体结构弹性模态振型,并依据车体模态位移计算结构模态贡献因子;分析控制车体弹性振动的模态匹配方法与传递函数控制方法。结果表明,对车体垂向振动贡献较大的模态依次为车体一阶垂弯、一阶菱形、二阶菱形、一阶扭转等模态,对横向振动贡献较大的模态依次为一阶横弯、一阶菱形、二阶菱形、一阶扭转模态。引起车体弹性振动的主要因素有轨道激扰、转向架蛇行、转向架模态、车下设备悬挂参数等。轮对、构架、车体等构件的刚性自振频率应满足隔振要求,车体一阶菱形弹性模态频率与构架刚性、弹性频率要有效隔离,可降低车体异常弹性振动;增大车体结构阻尼比可减小加速度传递函数幅值,提高乘坐舒适性,当车体结构阻尼比从0.015提高至0.150时,平稳性指标可改善13%,提高结构阻尼可显著降低车体振动。

全文